A Dynamical Systems Analysis of Semidefinite Programming with Application to Quadratic Optimization with Pure Quadratic Equality Constraints∗
نویسندگان
چکیده
This paper considers the problem of minimizing a quadratic cost subject to purely quadratic equality constraints. This problem is tackled by first relating it to a standard semidefinite programming problem. The approach taken leads to a dynamical systems analysis of semidefinite programming and the formulation of a gradient descent flow which can be used to solve semidefinite programming problems. Though the reformulation of the initial problem as a semidefinite programming problem does not in general lead directly to a solution of the original problem, the initial problem is solved by using a modified flow incorporating a penalty function.
منابع مشابه
A NEW APPROACH FOR SOLVING FULLY FUZZY QUADRATIC PROGRAMMING PROBLEMS
Quadratic programming (QP) is an optimization problem wherein one minimizes (or maximizes) a quadratic function of a finite number of decision variable subject to a finite number of linear inequality and/ or equality constraints. In this paper, a quadratic programming problem (FFQP) is considered in which all cost coefficients, constraints coefficients, and right hand side are characterized by ...
متن کاملA Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملRobust Control via Sequential Semidefinite
This paper discusses nonlinear optimization techniques in robust control synthesis, with special emphasis on design problems which may be cast as minimizing a linear objective function under linear matrix inequality (LMI) constraints in tandem with nonlinear matrix equality constraints. The latter type of constraints renders the design numerically and algorithmically difficult. We solve the opt...
متن کاملA Quadratically Constrained Quadratic Optimization Model for Completely Positive Cone Programming
We propose a class of quadratic optimization problems whose exact optimal objective values can be computed by their completely positive cone programming relaxations. The objective function can be any quadratic form. The constraints of each problem are described in terms of quadratic forms with no linear terms, and all constraints are homogeneous equalities, except one inhomogeneous equality whe...
متن کامل